вторник, 5 июня 2018 г.

Geração de estratégia de negociação automatizada


Geração de estratégia de negociação automatizada
O QuantDesk é uma solução completa de ponta a ponta para um fundo quantitativo de qualquer tamanho. Inclui OpenQuant IDE, QuantRouter (servidor de execução de algo com replicação de feed, consolidação, agregação e roteamento de pedidos inteligentes), QuantBase (servidor de dados de mercado com captura de feed em tempo real e gerenciamento de dados históricos centralizado), QuantTrader (mecanismo de implantação de produção para estratégias de negociação automatizadas desenvolvidas com OpenQuant) e QuantController, um aplicativo de servidor que complementa o QuantDesk para permitir um gerenciamento eficiente da arquitetura de negociação distribuída da SmartQuant.
Claro, ainda passamos muito tempo experimentando, tentando e testando diferentes estratégias. Ter um bom ambiente de desenvolvimento não permite que você ignore esse passo. A vantagem real de uma estrutura bem projetada é cortar o tempo entre testes e produção ao mínimo, e na natureza escalonável da infra-estrutura, que pode crescer com a empresa de gerenciar um pequeno capital de semente para níveis verdadeiramente institucionais. Com um sistema como este, os gerentes emergentes podem se sentir em condições equitativas ao negociar no mesmo mercado como concorrentes muito maiores e podem perceber plenamente as vantagens inerentes de ser ágil e adaptável.

Geração da estratégia de negociação com g.
Geração da estratégia de negociação com g.
Geração da estratégia de negociação com g.
Otimização da regra comercial em moeda estrangeira usando.
27.11.2017 & # 0183; & # 32; Em 1 de janeiro de 2005, Jiah-Shing Chen publicou: Geração de estratégia comercial usando algoritmos genéticos.
Avaliação de vizinhança na aquisição de negociação de ações.
Você já viu algum jogo usando algoritmos genéticos porque este é o uso mais comum de algoritmos genéticos em todos usando a mesma estratégia,
Negociação quantitativa: um algoritmo genético de código aberto.
NEGOCIAÇÃO AUTOMÁTICA COM PASSAGEM DE EXPOSIÇÃO E EXPERTAÇÃO antiga e limita a aplicação do nosso mercado cambial de estratégia comercial usando algoritmos genéticos.
Desenvolvendo estratégias de negociação de alto desempenho com genética.
16.10.2018 & # 0183; & # 32; Um software de algoritmo genético de fonte aberta (Convidado A diferença é que usar AI para negociação é Para uma referência geral em algoritmos genéticos,
Algoritmo genético - Wikipedia.
Negociação de estratégias de negociação com base em dados de confiança financeira usando uma carteira evolutiva usando a Geração de Estratégia de negociação de ativos únicos.
Como usar a aprendizagem de máquinas em sua troca - Algorítmica.
Estratégia de negociação FOREX Otimização As regras obtidas usando nossa genética 2.2 Abordagens evolutivas para desenvolvimento de estratégias de negociação Algoritmos genéticos têm.
Negociação Algorítmica - Aplicações FTS.
Software de negociação avançado: análise técnica e que você está fazendo uma negociação bem-sucedida usando seus Algoritmos Genéticos são algoritmos de busca.
Algoritmo genético em R - Tendência a seguir | Gekko Quant.
Usando algoritmos genéticos para encontrar negociação técnica Algoritmos genéticos pertencem a uma classe de aprendizado de máquina A estratégia de negociação especifica a posição.
Negociação de moeda algorítmica com base em NEAT.
O QuantTools permite escrever sua própria estratégia de negociação usando seu. Ao testar estratégias de negociação, uma abordagem comum é dividir os algoritmos genéticos.
Um sistema de negociação Forex baseado em um algoritmo genético.
26.10.2018 & # 0183; & # 32; Uma estratégia de negociação de portfólio de ações efetiva usando algoritmos genéticos e séries de tempo difusas ponderadas.
Genetic System Generation - Open Access Library.
A maioria dos gestores de fundos mútuos já estão usando a sofisticada geração de algoritmos computacionais de Trading Genetic "Algorithm". Genético.
The R Trader »Blog Archive» Usando Algoritmos Genéticos em.
10.12.2018 & # 0183; & # 32; Avaliação de vizinhança na aquisição de estratégia de negociação de ações usando algoritmos genéticos, apresentamos um método efetivo para adquirir estratégia comercial em.
Algoritmo Trading usando Q-Learning e Recurrent.
As mutações representam a mutação biológica e são usadas para manter a diversidade genética de uma geração de uma população para o uso de Algoritmos Genéticos na Negociação.
Negociação automatizada com Boosting e Ponderação Especializada.
"Software que escreve Software" "Estratégia Estocástica, Evolutiva, MultiRun Estratégia de Auto-geração" tecnologia de LABORATÓRIO de COMÉRCIO conhecido como Algoritmos Genéticos.
Otimização da Estratégia de Negociação, Algoritmos Genéticos.
Otimizando uma Estratégia Usando Algoritmos Genéticos. para criar uma nova geração e incluindo sua própria experiência de domínio em sua negociação. Usando o aprendizado da máquina.
GitHub - imanolperez / Genetic-algorithm-for-trading-in-cpp.
Beamforming Adaptativo Usando Algoritmos Genéticos: Geração de Estratégia de Negociação Usando Algoritmos Genéticos: Teoria do Jogo Usando Algoritmos Genéticos.
Agentes comerciais comerciais bem sucedidos usando a programação genética.
28.11.2017 & # 0183; & # 32; Aprenda como desenvolver negociação algorítmica A negociação algorítmica é uma estratégia de negociação que usa algoritmos computacionais para criar algoritmos genéticos.

Geração de estratégia de negociação automatizada
Se você ainda procura uma vantagem nos mercados, os sistemas de negociação automatizada são a melhor maneira de obtê-lo. Saber mais.
Copyright (c) 2018 Adaptrade Software. Todos os direitos reservados.
OS RESULTADOS DE DESEMPENHO HIPOTÉTICOS OU SIMULADOS TÊM CERTAS LIMITAÇÕES INERENTES. DESEJO UM REGISTRO DE DESEMPENHO REAL, OS RESULTADOS SIMULADOS NÃO REPRESENTAM A NEGOCIAÇÃO REAL. TAMBÉM, DESDE QUE OS NEGÓCIOS NÃO SEJAM REALMENTE EXECUTOS, OS RESULTADOS PODEM TENER SOB OU COMENTÁRIOS COMPLEMENTARES PARA O IMPACTO, SE HAVER, DE CERTOS FATORES DE MERCADO, TAL COMO FALTA DE LIQUIDEZ. PROGRAMAS DE NEGOCIAÇÃO SIMULADOS EM GERAL SÃO TAMBÉM SUJEITOS AO FATO QUE ESTÃO DESIGNADOS COM O BENEFÍCIO DE HINDSIGHT. NENHUMA REPRESENTAÇÃO ESTÁ FAZENDO QUE QUALQUER CONTA VÁ OU SEJA PROBABILITÁVEL PARA ALCANÇAR LUCROS OU PERDAS SIMILARES ÀOS MOSTRADOS.
EasyLanguage e TradeStation são marcas registradas da TradeStation Technologies, Inc.
Uma das maiores tendências no comércio varejista na última década foi o aumento da popularidade do comércio automatizado. Neste tipo de negociação, também conhecida como execução automatizada de ordens, os sinais de compra e venda gerados por um sistema de negociação são executados automaticamente por uma plataforma conectada à conta corretora do comerciante. Isso permite o comércio livre de mãos, o que permite uma execução mais rápida, menos erros e a capacidade de trocar prazos mais curtos com estratégias de maior freqüência.
O algoritmo básico para a construção de sistemas de negociação usando a geração automática de código é mostrado abaixo na Fig. 1. Começa com um método para combinar diferentes elementos da estratégia de negociação. Esses elementos podem incluir vários indicadores técnicos, como médias móveis, estocásticos e assim por diante; diferentes tipos de pedidos de entrada e saída; e condições lógicas para entrar e sair do mercado.
Figura 1. Algoritmo básico para construção de estratégia automatizada.
Depois que os diferentes elementos são combinados em uma estratégia coerente, ele pode ser avaliado no mercado ou mercados de interesse. Isso requer dados de mercado - preços, volume, interesse aberto, etc. - para cada mercado. De um modo geral, você também teria um conjunto de objetivos de construção para ajudar a classificar ou marcar cada estratégia. Exemplos de objetivos de construção incluem várias medidas de desempenho, como o lucro líquido, redução, porcentagem de vencedores, fator de lucro e assim por diante. Estes podem ser declarados como requisitos mínimos, como um fator de lucro de pelo menos 2.0 ou como objetivos para maximizar, como maximizar o lucro líquido.
Base teórica da geração automática de código.
Conforme descrito acima, construir um sistema comercial usando a geração automática de código é essencialmente um problema de otimização. A combinação de elementos estratégicos que maximizam os objetivos de construção é tomada como a estratégia final. Alguns comerciantes argumentariam que os sistemas comerciais deveriam ser construídos com base em uma hipótese de comportamento ou ação do mercado. Se você tem uma boa hipótese de como os mercados funcionam, uma estratégia pode ser construída em torno dessa hipótese e testada. Se isso funciona, ele apóia a hipótese e justifica a negociação da estratégia.
Gerador de código de sistema padrão para TradeStation.
Esta seção descreve uma abordagem ad hoc para a geração automática de código em que um sistema comercial para a TradeStation gera automaticamente outros sistemas de negociação baseados em padrões para a TradeStation. O sistema AutoSystemGen procura um conjunto de regras de negociação, juntamente com os valores de parâmetros associados, que atendem a um conjunto específico de requisitos de desempenho.
Embora quase qualquer tipo de indicador ou lógica de negociação possa ser incluído no gerador do sistema comercial descrito aqui, para manter as coisas bastante simples, as regras dos sistemas gerados serão restritas aos padrões de preços. Cada regra de entrada de um sistema de negociação gerado terá a seguinte forma:
A chave para este processo é encontrar sistemas de negociação de candidatos. Um sistema pode consistir de uma e dez regras do formulário mostrado acima. As negociações são introduzidas no mercado se todas as regras forem verdadeiras, e os negócios são encerrados um certo número de barras mais tarde. Se isso fosse codificado como um sistema TradeStation tradicional, com um máximo de 10 regras, haveria 52 entradas. Isso faria para uma estratégia pesada.
O código para o sistema AutoSystemGen e suas funções relacionadas está disponível no Breakout Futures (breakoutfutures /) na página Free Downloads.
Por exemplo, considere o mercado de futuros de títulos de tesouraria de 30 anos (símbolo @ US. P na TradeStation 8). O AutoSystemGen foi otimizado nos últimos 20 anos de preços de T-bond com a entrada OptStep aumentada de 1 para 10000. Isso significa que o sistema avaliou 10.000 sistemas de negociação diferentes. A otimização foi executada duas vezes, uma vez por trades longos e uma vez para negociações curtas. Foram utilizados os seguintes requisitos de desempenho: lucro líquido de pelo menos US $ 30.000, o pior caso de desconto no máximo de US $ 7500, pelo menos 200 negócios, porcentagem rentável de pelo menos 50% e fator de lucro de pelo menos 1,2. Em um computador dual core com o Vista, levou aproximadamente 10 minutos para executar cada otimização (10.000 sistemas por otimização).
Sistema 2332, @ US. P, 17/9/2007 12:23:00, Long Trades.
Lucro líquido = 53562.50, DD máximo = -7381.25, Num Trades = 250, Percentual de vitórias = 56.80, Prof factor = 1.631.
Var: EntNext (falso);
EntNext = Open [2] & gt; = Low [16] e.
Fechar [14] & lt; = Low [6] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 5771, @ US. P, 17/9/2007 12:27:00, Long Trades.
Lucro líquido = 42145,00, DD máximo = -5733.75, Num Trades = 207, Percentagem de vitórias = 57,00, factor Prof = 1,631.
Var: EntNext (falso);
EntNext = High [7] & gt; = Low [19] e.
Fechar [20] & gt; = Fechar [5] e.
High [18] & gt; = Low [2] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 7622, ​​@ US. P, 17/9/2007 12:29:00, Long Trades.
Lucro líquido = 59348.75, Max DD = -7222.50, Num Trades = 208, Percentual de vitórias = 60.58, Fator Prof. = 1.924.
Var: EntNext (falso);
EntNext = Low [2] & lt; = High [9] and.
Abra [11] & gt; = Abrir [18] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 3 então.
Venda o próximo bar no mercado;
Sistema 7718, @ US. P, 9/17/2007 12:29:00, Long Trades.
Lucro líquido = 35526.25, DD máximo = -6936.25, Num Trades = 292, Percentual de vitórias = 56.85, factor Prof = 1.418.
Var: EntNext (falso);
EntNext = Fechar [3] & gt; = High [19] and.
High [6] & lt; = Open [10] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 1 então.
Venda o próximo bar no mercado;
Sistema 6160, @ US. P, 9/17/2007 12:42:00, Short Trades.
Lucro líquido = 31277,50, DD máximo = -6846,25, Num Trades = 369, Percentual de vitórias = 51,76, Fator Prof. = 1,297.
Var: EntNext (falso);
EntNext = High [9] & gt; = Low [6] and.
Fechar [15] & gt; = Alto [8] e.
High [7] & lt; = Low [20] e.
Se EntNext então.
Venda curta barra seguinte no mercado;
Se BarsSinceEntry = 1 então.
Compre para cobrir a próxima barra no mercado;
A listagem para cada sistema inclui o número do sistema (correspondente à entrada OptStep), o símbolo do mercado, a data atual e se o sistema é apenas longo ou curto. A próxima linha contém algumas estatísticas de desempenho resumidas para ajudar na avaliação de cada sistema. Finalmente, o código do sistema é mostrado. Para avaliar os sistemas na TradeStation, o código entre as duas linhas de comentários () pode ser copiado e colado em uma estratégia no TradeStation e, em seguida, executado na janela do gráfico.
O último sistema no arquivo de saída é para um sistema de apenas curto-som (# 6160). Quando guardado na TradeStation como uma estratégia e aplicado ao mesmo gráfico de T-bond, a seguinte curva de equidade foi produzida:
Figura 3. Sistema de apenas curto prazo para títulos T, nos últimos 20 anos, com US $ 15 por negócio deduzido para custos de negociação, gerado pelo sistema AutoSystemGen.
Programação genética para geração automática de código.
A abordagem ad hoc descrita na seção anterior é simples, mas tem duas limitações: (1) as estratégias geradas aleatoriamente não convergem para os objetivos de construção e (2) o modelo do sistema de padrões é difícil de generalizar para estratégias mais complexas . Isso sugere que uma abordagem mais sofisticada seja necessária.
Um método para a geração automática de código que aborda essas duas preocupações é chamado de programação genética (GP), 1 que pertence a uma classe de técnicas chamadas algoritmos evolutivos. Algoritmos evolutivos e GP em particular foram desenvolvidos por pesquisadores em inteligência artificial baseados nos conceitos biológicos de reprodução e evolução. Um algoritmo GP "evolui" uma população de estratégias de negociação de uma população inicial de membros gerados aleatoriamente. Os membros da população competem uns contra os outros com base na sua "aptidão". Os membros do ajuste são selecionados como "pais" para produzir um novo membro da população, que substitui um membro mais fraco (menos adequado).
Reduz a necessidade de conhecimento de indicadores técnicos e design de estratégias. O algoritmo GP seleciona as regras de negociação individuais, indicadores e outros elementos da estratégia para você.
O processo de construção da regra permite uma complexidade considerável, incluindo regras comerciais não-lineares.
O processo GP elimina os elementos mais laboriosos e tediosos do processo de desenvolvimento da estratégia tradicional; ou seja, surgir uma nova idéia comercial, programá-la, verificar o código, testar a estratégia, modificar o código e repetir. Isso é feito automaticamente no GP.
O processo de GP é imparcial. Considerando que a maioria dos comerciantes desenvolveu vieses para ou contra indicadores específicos e / ou lógica de negociação, o GP é guiado apenas pelo que funciona.
Ao incorporar uma semântica de regras de negociação adequada, o processo de GP pode ser projetado para produzir regras de negociação logicamente corretas e código sem erros.
O processo GP geralmente produz resultados que não são únicos, mas não óbvios. Em muitos casos, essas gemas escondidas seriam quase impossíveis de encontrar de outra maneira.
Ao automatizar o processo de compilação, o tempo necessário para desenvolver uma estratégia viável pode ser reduzido de semanas ou meses a uma questão de minutos em alguns casos, dependendo do comprimento do arquivo de dados de preço de entrada e outras configurações de compilação.
A programação genética tem sido usada com sucesso em diversos campos, incluindo processamento de sinal e imagem, controle de processo, bioinformática, modelagem de dados, geração de código de programação, jogos de computador e modelagem econômica; veja, por exemplo, Poli et al. 2 Uma visão geral do uso de GP em finanças é fornecida por Chen. 3 Colin 4 foi um dos primeiros a explicar como usar o GP para otimizar combinações de regras para uma estratégia de negociação.
J. Koza. Programação genética. O MIT Press, Cambridge, MA. 1992.
R. Poli, W. B. Langdon e N. F. McPhee. Um guia de campo para programação genética. Publicado via lulu e disponível gratuitamente em gp-field-guide. uk, 2008. (Com contribuições de J. R. Koza).
Shu-Heng Chen (Editor). Algoritmos genéticos e programação genética em finanças computacionais. Kluwer Academic Publishers, Norwell, MA. 2002.
A. Colin. Algoritmos genéticos para modelagem financeira, Trading on the Edge. 1994, páginas 165-168. John Wiley & amp; Sons, Inc. Nova York.
Risto Karjalainen. Evolução das regras de negociação técnica para futuros S & amp; P 500, Regras de Negociação Avançadas, 2002, Páginas 345-366. Elsevier Science, Oxford, Reino Unido.
Jean-Yves Potvin, Patrick Soriano, Maxime Vallee. Gerando regras de negociação nos mercados de ações com programação genética. Computadores e Pesquisa de operações, Volume 31, edição 7, junho de 2004, páginas 1033-1047.
Massimiliano Kaucic. Investimento utilizando métodos evolutivos de aprendizagem e regras técnicas. European Journal of Operational Research, volume 207, edição 3, 16 de dezembro de 2018, páginas 1717-1727.
Algoritmo de construção usando programação genética.
Expandindo o algoritmo de compilação apresentado anteriormente (ver Fig. 1), um algoritmo mais detalhado é ilustrado abaixo na Fig. 4 com base na programação genética. As caixas sombreadas de cinza representam os dados de entrada, que incluem os dados de preços para o (s) mercado (s) de interesse, indicadores e tipos de pedidos no chamado conjunto de compilação e as opções e critérios de desempenho (objetivos de construção) selecionados pelo do utilizador.
Figura 4. Algoritmo de compilação para geração automática de código com programação genética.
O processo GP pode ser usado para desenvolver simultaneamente dois elementos de estratégia essenciais: condições de entrada e pedidos de entrada e saída. As condições de entrada são tipicamente representadas como estruturas de árvores, como mostrado abaixo na Fig. 5.
A chave para a evolução das ordens de entrada e saída usando programação genética é representar os diferentes tipos de pedidos de forma generalizada. Por exemplo, parar e limitar os preços de entrada podem ser representados da seguinte forma:
Embora a programação genética seja capaz de gerar estratégias de negociação com uma variedade considerável, é necessário começar com uma estrutura generalizada para as estratégias a serem seguidas. A estrutura de estratégia mostrada abaixo em pseudo-código fornece uma estrutura para estratégias de construção com base em condições de entrada e tipos de pedidos como os discutidos acima:
Entradas: N1, N2, N3, ...
Se a posição for plana e LongEntryCondition for verdade, então.
Ordem de entrada longa ...
Inicialize as ordens de saída longas, conforme necessário ...
Se a posição for plana e ShortEntryCondition for verdade, então.
Ordem de entrada curta ...
Inicialize ordens de saída curtas, conforme necessário ...
Se a posição é longa então.
Ordem de saída longa 1 ...
Ordem de saída longa 2 ...
Se a posição for curta, então.
Ordem de saída curta 1 ...
Ordem de saída curta 2 ...
[Saída opcional de fim de dia]
As estratégias começam com a lista de insumos. É fornecida uma entrada para qualquer parâmetro do indicador, comprimento do look-back do padrão de preços e quaisquer parâmetros exigidos pelas ordens de entrada e saída, como o comprimento de look-back para o ATR.
Para ilustrar o uso de programação genética para a geração automática de código na construção de estratégias, o programa Adaptrade Builder foi administrado em barras diárias de um mercado de futuros de índices de ações para uma pequena população e um número limitado de gerações. As métricas de desempenho escolhidas para orientar o processo foram o lucro líquido, o número de trades, o coeficiente de correlação, a significância estatística e a relação retorno / redução. Alvos específicos foram definidos para o número de negociações e a relação retorno / retirada. As outras métricas selecionadas foram maximizadas. A função de fitness foi uma média ponderada de termos para cada métrica.
Figura 6. Percentagem de membros da população com lucro líquido fora da amostra superior a US $ 1.000.
Da mesma forma, o lucro líquido médio da OOS aumentou após cinco e dez gerações, como mostrado na Figura 7. Observe que esses resultados são para o lucro líquido da OOS. Por definição, os dados fora da amostra não são usados ​​na compilação, então os resultados da OOS são imparciais; eles não se beneficiam de retrospectiva. Isso implica que o processo GP não só tende a melhorar os resultados na amostra em sucessivas gerações, o que é um efeito direto do algoritmo GP, mas os resultados da OOS também tendem a melhorar à medida que as estratégias são desenvolvidas. Isso indica uma compilação de alta qualidade.
Código de Estratégia EasyLanguage para a TradeStation.
Membro da população: 46.
Criado por: Adaptrade Builder versão 1.1.0.0.
Criado: 19/10/2018 2:19:52 PM.
Código do TradeStation para TS 6 ou posterior.
Arquivo de preço: C: \ TestData. txt.
Var: EntCondL (falso),
EntCondL = (Maior (Volume, NL1) & gt; = Menor (Volume, NL2)) ou (Volume & lt; Média (Volume, NL3));
Se MarketPosition = 0 e EntCondL, em seguida, comece.
Compre a próxima barra na XAverage (L, NBarEnL1) + EntFrL * ATREnL parar;
Se MarketPosition = 0 e EntCondS, em seguida, comece.
Vender curto barra seguinte no Mais alto (H, NBarEnS1) - EntFrS * AbsValue (Menor (L, NBarEnS2) - Menor (H, NBarEnS3)) parar;
SStop = Power (10, 10);
Se MarketPosition & gt; 0 então comece.
Se BarsSinceEntry & gt; = NBarExL então.
Venda o próximo bar no mercado;
Venda o próximo bar no EntryPrice + TargFrL * ATRTargL limite;
Se MarketPosition & lt; 0 então comece.
Se EntryPrice - C & gt; ATRFrTrailS * ATRTrailS então.
Se STrailOn então começar.
NewSStop = EntryPrice - TrailPctS * (EntryPrice - C) / 100 .;
SStop = MinList (SStop, NewSStop);
Se BarsSinceEntry & gt; = NBarExS então.
Compre para cobrir a próxima barra no mercado;
Se STrailOn então.
Compre para cobrir a próxima barra na parada SStop;
Construir sistemas de negociação através da geração automática de código é um tipo de otimização. A maioria dos comerciantes sistemáticos provavelmente está familiarizado com a otimização de parâmetros, em que as entradas para uma estratégia são otimizadas. Ao contrário da otimização de parâmetros, a geração automática de código otimiza a lógica de negociação da estratégia. No entanto, o risco de sobre-otimização, ou "excesso de ajuste", também é uma preocupação para a geração automática de código, assim como é para a otimização de parâmetros.
Para obter informações sobre software para estratégias de negociação de construção usando programação genética, clique aqui.
Se você quiser ser informado de novos desenvolvimentos, novidades e ofertas especiais do Adaptrade Software, por favor, junte-se à nossa lista de e-mail. Obrigado.
Copyright © 2004-2018 Adaptrade Software. Todos os direitos reservados.

Geração de estratégia de negociação automatizada.
Sistemas de negociação totalmente automatizados: uma idéia duvidosa | ...
09.02.2018 & # 0183; & # 32; A idéia de que um comerciante de varejo, investidor ou mesmo fundo pode empregar sistemas de negociação automatizados e lucrar de forma consistente sem ajustes contínuos ou.
Aplicação automated day-trading | Design de sistemas.
Systems Design Engineering & # 187; Projetos de oficina & # 187; 2007-08 SYDE 461/462 projetos de oficina & # 187; Negociação diária automatizada. sua estratégia preferida em uma automação.
Cool Trade Pro - Estratégia Longa DOW 30 - A maior negociação de ações.
17.12.2018 & # 0183; & # 32; Robotic Stock Trading é uma forma de tecnologia de inteligência artificial referida como a próxima geração de negociação de ações automatizada. . estratégia de negociação.
Projetando e Usando Estratégias Automatizadas de Negociação - ...
Uma estratégia de negociação automatizada é criada quando um comerciante ou programador projeta um. A geração de pedidos é significativamente mais precisa quando o computador está autorizado.
melhor linguagem de programação para negociação algorítmica ...
Discute a melhor linguagem de programação para implementar um sistema de negociação algorítmica, incluindo arquitetura, resiliência e estratégia.
Software de negociação algorítmica para estratégias quantitativas.
OpenQuant é Algorithmic Trading Software for Quantitative Strategies Research, Development, Simulation, Backtesting, otimização e negociação automatizada ...
FLIPPING WALL STREET Automated Stock Trading Software.
15.10.2017 & # 0183; & # 32; Eventbrite - O Phoenix Financial Advisory Group, LLC apresenta FLIPPING WALL STREET Automated Stock Trading Software Webinar - quinta-feira, maio ...
Sistemas de Negociação | Regras de negociação automatizadas - FX ...
Revista FX Trader. Revista gratuita de comércio forex. Sistemas de negociação. Evolução gramatical. Geração automatizada de regras de negociação.
Robotic Trading Systems: Sobre Robotic Trading Software.
Sobre Robotic Trading. referida como a próxima geração de negociação de ações automatizada. . uma estratégia de negociação definida pelo usuário continuamente e.
Pure Financial Academy: Hustler de 2ª geração? - Negociação.
Curioso sobre Will Busby da Pure Financial Academy? Você pode confiar em sua estratégia de negociação automatizada? A educação comercial vale $ 12k? Leia nossa revisão.

Geração de estratégia de negociação automatizada
Se você ainda procura uma vantagem nos mercados, os sistemas de negociação automatizada são a melhor maneira de obtê-lo. Saber mais.
Copyright (c) 2018 Adaptrade Software. Todos os direitos reservados.
OS RESULTADOS DE DESEMPENHO HIPOTÉTICOS OU SIMULADOS TÊM CERTAS LIMITAÇÕES INERENTES. DESEJO UM REGISTRO DE DESEMPENHO REAL, OS RESULTADOS SIMULADOS NÃO REPRESENTAM A NEGOCIAÇÃO REAL. TAMBÉM, DESDE QUE OS NEGÓCIOS NÃO SEJAM REALMENTE EXECUTOS, OS RESULTADOS PODEM TENER SOB OU COMENTÁRIOS COMPLEMENTARES PARA O IMPACTO, SE HAVER, DE CERTOS FATORES DE MERCADO, TAL COMO FALTA DE LIQUIDEZ. PROGRAMAS DE NEGOCIAÇÃO SIMULADOS EM GERAL SÃO TAMBÉM SUJEITOS AO FATO QUE ESTÃO DESIGNADOS COM O BENEFÍCIO DE HINDSIGHT. NENHUMA REPRESENTAÇÃO ESTÁ FAZENDO QUE QUALQUER CONTA VÁ OU SEJA PROBABILITÁVEL PARA ALCANÇAR LUCROS OU PERDAS SIMILARES ÀOS MOSTRADOS.
EasyLanguage e TradeStation são marcas registradas da TradeStation Technologies, Inc.
Uma das maiores tendências no comércio varejista na última década foi o aumento da popularidade do comércio automatizado. Neste tipo de negociação, também conhecida como execução automatizada de ordens, os sinais de compra e venda gerados por um sistema de negociação são executados automaticamente por uma plataforma conectada à conta corretora do comerciante. Isso permite o comércio livre de mãos, o que permite uma execução mais rápida, menos erros e a capacidade de trocar prazos mais curtos com estratégias de maior freqüência.
O algoritmo básico para a construção de sistemas de negociação usando a geração automática de código é mostrado abaixo na Fig. 1. Começa com um método para combinar diferentes elementos da estratégia de negociação. Esses elementos podem incluir vários indicadores técnicos, como médias móveis, estocásticos e assim por diante; diferentes tipos de pedidos de entrada e saída; e condições lógicas para entrar e sair do mercado.
Figura 1. Algoritmo básico para construção de estratégia automatizada.
Depois que os diferentes elementos são combinados em uma estratégia coerente, ele pode ser avaliado no mercado ou mercados de interesse. Isso requer dados de mercado - preços, volume, interesse aberto, etc. - para cada mercado. De um modo geral, você também teria um conjunto de objetivos de construção para ajudar a classificar ou marcar cada estratégia. Exemplos de objetivos de construção incluem várias medidas de desempenho, como o lucro líquido, redução, porcentagem de vencedores, fator de lucro e assim por diante. Estes podem ser declarados como requisitos mínimos, como um fator de lucro de pelo menos 2.0 ou como objetivos para maximizar, como maximizar o lucro líquido.
Base teórica da geração automática de código.
Conforme descrito acima, construir um sistema comercial usando a geração automática de código é essencialmente um problema de otimização. A combinação de elementos estratégicos que maximizam os objetivos de construção é tomada como a estratégia final. Alguns comerciantes argumentariam que os sistemas comerciais deveriam ser construídos com base em uma hipótese de comportamento ou ação do mercado. Se você tem uma boa hipótese de como os mercados funcionam, uma estratégia pode ser construída em torno dessa hipótese e testada. Se isso funciona, ele apóia a hipótese e justifica a negociação da estratégia.
Gerador de código de sistema padrão para TradeStation.
Esta seção descreve uma abordagem ad hoc para a geração automática de código em que um sistema comercial para a TradeStation gera automaticamente outros sistemas de negociação baseados em padrões para a TradeStation. O sistema AutoSystemGen procura um conjunto de regras de negociação, juntamente com os valores de parâmetros associados, que atendem a um conjunto específico de requisitos de desempenho.
Embora quase qualquer tipo de indicador ou lógica de negociação possa ser incluído no gerador do sistema comercial descrito aqui, para manter as coisas bastante simples, as regras dos sistemas gerados serão restritas aos padrões de preços. Cada regra de entrada de um sistema de negociação gerado terá a seguinte forma:
A chave para este processo é encontrar sistemas de negociação de candidatos. Um sistema pode consistir de uma e dez regras do formulário mostrado acima. As negociações são introduzidas no mercado se todas as regras forem verdadeiras, e os negócios são encerrados um certo número de barras mais tarde. Se isso fosse codificado como um sistema TradeStation tradicional, com um máximo de 10 regras, haveria 52 entradas. Isso faria para uma estratégia pesada.
O código para o sistema AutoSystemGen e suas funções relacionadas está disponível no Breakout Futures (breakoutfutures /) na página Free Downloads.
Por exemplo, considere o mercado de futuros de títulos de tesouraria de 30 anos (símbolo @ US. P na TradeStation 8). O AutoSystemGen foi otimizado nos últimos 20 anos de preços de T-bond com a entrada OptStep aumentada de 1 para 10000. Isso significa que o sistema avaliou 10.000 sistemas de negociação diferentes. A otimização foi executada duas vezes, uma vez por trades longos e uma vez para negociações curtas. Foram utilizados os seguintes requisitos de desempenho: lucro líquido de pelo menos US $ 30.000, o pior caso de desconto no máximo de US $ 7500, pelo menos 200 negócios, porcentagem rentável de pelo menos 50% e fator de lucro de pelo menos 1,2. Em um computador dual core com o Vista, levou aproximadamente 10 minutos para executar cada otimização (10.000 sistemas por otimização).
Sistema 2332, @ US. P, 17/9/2007 12:23:00, Long Trades.
Lucro líquido = 53562.50, DD máximo = -7381.25, Num Trades = 250, Percentual de vitórias = 56.80, Prof factor = 1.631.
Var: EntNext (falso);
EntNext = Open [2] & gt; = Low [16] e.
Fechar [14] & lt; = Low [6] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 5771, @ US. P, 17/9/2007 12:27:00, Long Trades.
Lucro líquido = 42145,00, DD máximo = -5733.75, Num Trades = 207, Percentagem de vitórias = 57,00, factor Prof = 1,631.
Var: EntNext (falso);
EntNext = High [7] & gt; = Low [19] e.
Fechar [20] & gt; = Fechar [5] e.
High [18] & gt; = Low [2] and.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 2 então.
Venda o próximo bar no mercado;
Sistema 7622, ​​@ US. P, 17/9/2007 12:29:00, Long Trades.
Lucro líquido = 59348.75, Max DD = -7222.50, Num Trades = 208, Percentual de vitórias = 60.58, Fator Prof. = 1.924.
Var: EntNext (falso);
EntNext = Low [2] & lt; = High [9] and.
Abra [11] & gt; = Abrir [18] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 3 então.
Venda o próximo bar no mercado;
Sistema 7718, @ US. P, 9/17/2007 12:29:00, Long Trades.
Lucro líquido = 35526.25, DD máximo = -6936.25, Num Trades = 292, Percentual de vitórias = 56.85, factor Prof = 1.418.
Var: EntNext (falso);
EntNext = Fechar [3] & gt; = High [19] and.
High [6] & lt; = Open [10] e.
Se EntNext então.
Compre o próximo bar no mercado;
Se BarsSinceEntry = 1 então.
Venda o próximo bar no mercado;
Sistema 6160, @ US. P, 9/17/2007 12:42:00, Short Trades.
Lucro líquido = 31277,50, DD máximo = -6846,25, Num Trades = 369, Percentual de vitórias = 51,76, Fator Prof. = 1,297.
Var: EntNext (falso);
EntNext = High [9] & gt; = Low [6] and.
Fechar [15] & gt; = Alto [8] e.
High [7] & lt; = Low [20] e.
Se EntNext então.
Venda curta barra seguinte no mercado;
Se BarsSinceEntry = 1 então.
Compre para cobrir a próxima barra no mercado;
A listagem para cada sistema inclui o número do sistema (correspondente à entrada OptStep), o símbolo do mercado, a data atual e se o sistema é apenas longo ou curto. A próxima linha contém algumas estatísticas de desempenho resumidas para ajudar na avaliação de cada sistema. Finalmente, o código do sistema é mostrado. Para avaliar os sistemas na TradeStation, o código entre as duas linhas de comentários () pode ser copiado e colado em uma estratégia no TradeStation e, em seguida, executado na janela do gráfico.
O último sistema no arquivo de saída é para um sistema de apenas curto-som (# 6160). Quando guardado na TradeStation como uma estratégia e aplicado ao mesmo gráfico de T-bond, a seguinte curva de equidade foi produzida:
Figura 3. Sistema de apenas curto prazo para títulos T, nos últimos 20 anos, com US $ 15 por negócio deduzido para custos de negociação, gerado pelo sistema AutoSystemGen.
Programação genética para geração automática de código.
A abordagem ad hoc descrita na seção anterior é simples, mas tem duas limitações: (1) as estratégias geradas aleatoriamente não convergem para os objetivos de construção e (2) o modelo do sistema de padrões é difícil de generalizar para estratégias mais complexas . Isso sugere que uma abordagem mais sofisticada seja necessária.
Um método para a geração automática de código que aborda essas duas preocupações é chamado de programação genética (GP), 1 que pertence a uma classe de técnicas chamadas algoritmos evolutivos. Algoritmos evolutivos e GP em particular foram desenvolvidos por pesquisadores em inteligência artificial baseados nos conceitos biológicos de reprodução e evolução. Um algoritmo GP "evolui" uma população de estratégias de negociação de uma população inicial de membros gerados aleatoriamente. Os membros da população competem uns contra os outros com base na sua "aptidão". Os membros do ajuste são selecionados como "pais" para produzir um novo membro da população, que substitui um membro mais fraco (menos adequado).
Reduz a necessidade de conhecimento de indicadores técnicos e design de estratégias. O algoritmo GP seleciona as regras de negociação individuais, indicadores e outros elementos da estratégia para você.
O processo de construção da regra permite uma complexidade considerável, incluindo regras comerciais não-lineares.
O processo GP elimina os elementos mais laboriosos e tediosos do processo de desenvolvimento da estratégia tradicional; ou seja, surgir uma nova idéia comercial, programá-la, verificar o código, testar a estratégia, modificar o código e repetir. Isso é feito automaticamente no GP.
O processo de GP é imparcial. Considerando que a maioria dos comerciantes desenvolveu vieses para ou contra indicadores específicos e / ou lógica de negociação, o GP é guiado apenas pelo que funciona.
Ao incorporar uma semântica de regras de negociação adequada, o processo de GP pode ser projetado para produzir regras de negociação logicamente corretas e código sem erros.
O processo GP geralmente produz resultados que não são únicos, mas não óbvios. Em muitos casos, essas gemas escondidas seriam quase impossíveis de encontrar de outra maneira.
Ao automatizar o processo de compilação, o tempo necessário para desenvolver uma estratégia viável pode ser reduzido de semanas ou meses a uma questão de minutos em alguns casos, dependendo do comprimento do arquivo de dados de preço de entrada e outras configurações de compilação.
A programação genética tem sido usada com sucesso em diversos campos, incluindo processamento de sinal e imagem, controle de processo, bioinformática, modelagem de dados, geração de código de programação, jogos de computador e modelagem econômica; veja, por exemplo, Poli et al. 2 Uma visão geral do uso de GP em finanças é fornecida por Chen. 3 Colin 4 foi um dos primeiros a explicar como usar o GP para otimizar combinações de regras para uma estratégia de negociação.
J. Koza. Programação genética. O MIT Press, Cambridge, MA. 1992.
R. Poli, W. B. Langdon e N. F. McPhee. Um guia de campo para programação genética. Publicado via lulu e disponível gratuitamente em gp-field-guide. uk, 2008. (Com contribuições de J. R. Koza).
Shu-Heng Chen (Editor). Algoritmos genéticos e programação genética em finanças computacionais. Kluwer Academic Publishers, Norwell, MA. 2002.
A. Colin. Algoritmos genéticos para modelagem financeira, Trading on the Edge. 1994, páginas 165-168. John Wiley & amp; Sons, Inc. Nova York.
Risto Karjalainen. Evolução das regras de negociação técnica para futuros S & amp; P 500, Regras de Negociação Avançadas, 2002, Páginas 345-366. Elsevier Science, Oxford, Reino Unido.
Jean-Yves Potvin, Patrick Soriano, Maxime Vallee. Gerando regras de negociação nos mercados de ações com programação genética. Computadores e Pesquisa de operações, Volume 31, edição 7, junho de 2004, páginas 1033-1047.
Massimiliano Kaucic. Investimento utilizando métodos evolutivos de aprendizagem e regras técnicas. European Journal of Operational Research, volume 207, edição 3, 16 de dezembro de 2018, páginas 1717-1727.
Algoritmo de construção usando programação genética.
Expandindo o algoritmo de compilação apresentado anteriormente (ver Fig. 1), um algoritmo mais detalhado é ilustrado abaixo na Fig. 4 com base na programação genética. As caixas sombreadas de cinza representam os dados de entrada, que incluem os dados de preços para o (s) mercado (s) de interesse, indicadores e tipos de pedidos no chamado conjunto de compilação e as opções e critérios de desempenho (objetivos de construção) selecionados pelo do utilizador.
Figura 4. Algoritmo de compilação para geração automática de código com programação genética.
O processo GP pode ser usado para desenvolver simultaneamente dois elementos de estratégia essenciais: condições de entrada e pedidos de entrada e saída. As condições de entrada são tipicamente representadas como estruturas de árvores, como mostrado abaixo na Fig. 5.
A chave para a evolução das ordens de entrada e saída usando programação genética é representar os diferentes tipos de pedidos de forma generalizada. Por exemplo, parar e limitar os preços de entrada podem ser representados da seguinte forma:
Embora a programação genética seja capaz de gerar estratégias de negociação com uma variedade considerável, é necessário começar com uma estrutura generalizada para as estratégias a serem seguidas. A estrutura de estratégia mostrada abaixo em pseudo-código fornece uma estrutura para estratégias de construção com base em condições de entrada e tipos de pedidos como os discutidos acima:
Entradas: N1, N2, N3, ...
Se a posição for plana e LongEntryCondition for verdade, então.
Ordem de entrada longa ...
Inicialize as ordens de saída longas, conforme necessário ...
Se a posição for plana e ShortEntryCondition for verdade, então.
Ordem de entrada curta ...
Inicialize ordens de saída curtas, conforme necessário ...
Se a posição é longa então.
Ordem de saída longa 1 ...
Ordem de saída longa 2 ...
Se a posição for curta, então.
Ordem de saída curta 1 ...
Ordem de saída curta 2 ...
[Saída opcional de fim de dia]
As estratégias começam com a lista de insumos. É fornecida uma entrada para qualquer parâmetro do indicador, comprimento do look-back do padrão de preços e quaisquer parâmetros exigidos pelas ordens de entrada e saída, como o comprimento de look-back para o ATR.
Para ilustrar o uso de programação genética para a geração automática de código na construção de estratégias, o programa Adaptrade Builder foi administrado em barras diárias de um mercado de futuros de índices de ações para uma pequena população e um número limitado de gerações. As métricas de desempenho escolhidas para orientar o processo foram o lucro líquido, o número de trades, o coeficiente de correlação, a significância estatística e a relação retorno / redução. Alvos específicos foram definidos para o número de negociações e a relação retorno / retirada. As outras métricas selecionadas foram maximizadas. A função de fitness foi uma média ponderada de termos para cada métrica.
Figura 6. Percentagem de membros da população com lucro líquido fora da amostra superior a US $ 1.000.
Da mesma forma, o lucro líquido médio da OOS aumentou após cinco e dez gerações, como mostrado na Figura 7. Observe que esses resultados são para o lucro líquido da OOS. Por definição, os dados fora da amostra não são usados ​​na compilação, então os resultados da OOS são imparciais; eles não se beneficiam de retrospectiva. Isso implica que o processo GP não só tende a melhorar os resultados na amostra em sucessivas gerações, o que é um efeito direto do algoritmo GP, mas os resultados da OOS também tendem a melhorar à medida que as estratégias são desenvolvidas. Isso indica uma compilação de alta qualidade.
Código de Estratégia EasyLanguage para a TradeStation.
Membro da população: 46.
Criado por: Adaptrade Builder versão 1.1.0.0.
Criado: 19/10/2018 2:19:52 PM.
Código do TradeStation para TS 6 ou posterior.
Arquivo de preço: C: \ TestData. txt.
Var: EntCondL (falso),
EntCondL = (Maior (Volume, NL1) & gt; = Menor (Volume, NL2)) ou (Volume & lt; Média (Volume, NL3));
Se MarketPosition = 0 e EntCondL, em seguida, comece.
Compre a próxima barra na XAverage (L, NBarEnL1) + EntFrL * ATREnL parar;
Se MarketPosition = 0 e EntCondS, em seguida, comece.
Vender curto barra seguinte no Mais alto (H, NBarEnS1) - EntFrS * AbsValue (Menor (L, NBarEnS2) - Menor (H, NBarEnS3)) parar;
SStop = Power (10, 10);
Se MarketPosition & gt; 0 então comece.
Se BarsSinceEntry & gt; = NBarExL então.
Venda o próximo bar no mercado;
Venda o próximo bar no EntryPrice + TargFrL * ATRTargL limite;
Se MarketPosition & lt; 0 então comece.
Se EntryPrice - C & gt; ATRFrTrailS * ATRTrailS então.
Se STrailOn então começar.
NewSStop = EntryPrice - TrailPctS * (EntryPrice - C) / 100 .;
SStop = MinList (SStop, NewSStop);
Se BarsSinceEntry & gt; = NBarExS então.
Compre para cobrir a próxima barra no mercado;
Se STrailOn então.
Compre para cobrir a próxima barra na parada SStop;
Construir sistemas de negociação através da geração automática de código é um tipo de otimização. A maioria dos comerciantes sistemáticos provavelmente está familiarizado com a otimização de parâmetros, em que as entradas para uma estratégia são otimizadas. Ao contrário da otimização de parâmetros, a geração automática de código otimiza a lógica de negociação da estratégia. No entanto, o risco de sobre-otimização, ou "excesso de ajuste", também é uma preocupação para a geração automática de código, assim como é para a otimização de parâmetros.
Para obter informações sobre software para estratégias de negociação de construção usando programação genética, clique aqui.
Se você quiser ser informado de novos desenvolvimentos, novidades e ofertas especiais do Adaptrade Software, por favor, junte-se à nossa lista de e-mail. Obrigado.
Copyright © 2004-2018 Adaptrade Software. Todos os direitos reservados.

Комментариев нет:

Отправить комментарий